引入

[!NOTE] 爬楼梯
给定一个共有 𝑛 阶的楼梯,你每步可以上 1 阶或者 2 阶,请问有多少种方案可以爬到楼顶。

如图所示,对于一个 3 阶楼梯,共有 3 种方案可以爬到楼顶。
BAvMXOSKbrXnYZww-e803a930-b68a-8f30-330b-3bdde9c03333|652
BAvMXOSKbrXnYZww-52c94a6a-cbec-72c0-228d-58186892254d|1013
BAvMXOSKbrXnYZww-1e73f527-aab2-88d8-5d65-d1c089f681bf|748

暴力搜索:回溯

我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 1 阶或 2 阶,每当到达楼梯顶部时就将方案数量加 1 ,当越过楼梯顶部时就将其剪枝。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*回溯*/
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (auto &choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
break;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
vector<int> choices = {1, 2}; // 可选择向上爬 1 或 2 阶
int state = 0;
// 从第 0 阶开始爬
vector<int> res = {0};
// 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}

暴力搜索:深度优先搜索

我们可以根据递推公式得到暴力搜索解法。以 𝑑𝑝[𝑛] 为起始点,递归地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 𝑑𝑝[1] 和 𝑑𝑝[2] 时返回。其中,最小子问题的解是已知的,即 𝑑𝑝[1] = 1、𝑑𝑝[2] = 2 ,表示爬到第 1、2 阶分别有 1、2 种方案。

1
2
3
4
5
6
7
8
9
10
11
12
13
/* 搜索 */
int dfs(int i) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1) + dfs(i - 2);
return count;
}
/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
return dfs(n);
}

重叠子问题

BAvMXOSKbrXnYZww-05739e4c-3a7b-ee44-d8c6-a4f85bdbc441|742
指数阶的时间复杂度是由于“重叠子问题”导致的。例如 𝑑𝑝[9] 被分解为 𝑑𝑝[8] 和 𝑑𝑝[7] ,𝑑𝑝[8] 被分解为 𝑑𝑝[7] 和 𝑑𝑝[6] ,两者都包含子问题 𝑑𝑝[7] 。

记忆化搜索

为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。

  1. 当首次计算 𝑑𝑝[𝑖] 时,我们将其记录至 mem[i] ,以便之后使用。
  2. 当再次需要计算 𝑑𝑝[𝑖] 时,我们便可直接从 mem[i] 中获取结果,从而避免重复计算该子问题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
vector<int> mem(n + 1, -1);
return dfs(n, mem);
}

经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 𝑂(𝑛)

动态规划

记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯将子问题的解逐层收集,构建出原问题的解。
与之相反,动态规划是一种“从底至顶”的方法:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int climbingStairsDP(int n) {
if (n == 1 || n == 2)
return n;
// 初始化 dp 表,用于存储子问题的解
vector<int> dp(n + 1);
// 初始状态:预设最小子问题的解
dp[1] = 1; //边界
dp[2] = 2; //边界
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2]; //最优子结构
}
return dp[n];
}

BAvMXOSKbrXnYZww-25d9bd04-cec8-87d3-9b3a-1ed8973282ab|740